1-Alkyl-3-(3-alkyl-5-nitro-4-thiazolin-2-ylidene)ureas and Related Compounds as Schistosomicides

Leslie M. Werbel,* Margaret B. Degnan, Gail F. Harger, David B. Capps,

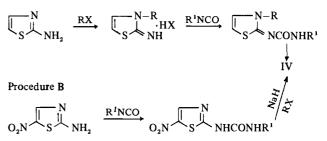
Chemistry Department, Research and Development Division, Parke, Davis and Company, Ann Arbor, Michigan 48106

Peter J. Islip, and Michael D. Closier

Research Laboratories, Parke, Davis and Company, Hounslow, Middlesex, England. Received January 27, 1972

A wide variety of 1-alkyl-3-(3-alkyl-5-nitro-4-thiazolin-2-ylidene)ureas, 1-alkyl-3-(3-aralkyl-5-nitro-4-thiazolin-2-ylidene)ureas (IV), and related compounds have been prepared. The two main preparative routes involved nitration of a urea, obtained from an isocyanate and a 3-substituted-2-iminothiazoline, and alkylation of a 1-alkyl-3-(5-nitro-2-thiazolyl)urea with the desired halide in the presence of NaH. Activity against *Schistosoma mansoni* infections is widespread among these compounds both in mice and monkeys. Structure-activity relationships are discussed.

Activity among structures related to the schistosomicide niridazole (I) has been shown to be quite limited. Even minor modifications completely eliminate activity against the parasite.¹ In extending our studies to still other structures bearing some similarity to the niridazole molecule, it was found surprisingly that although II had little activity the isomeric 2-(acetylimino)-5-nitro-*N*,*N*-dipropyl-4-thi-


$$O_{2N} \xrightarrow{N} S \xrightarrow{N} O_{2N} \xrightarrow{N} O_{2N} \xrightarrow{N} S \xrightarrow{N} N \xrightarrow{CH_{2}CON(C_{3}H_{7})_{2}} O_{2N} \xrightarrow{I} O_{2N} \xrightarrow{COCH_{3}} O_{2N} \xrightarrow{II} O_{2N} \xrightarrow$$

azoline-3-acetamide (III) was highly active against Schistosoma mansoni infections.² Follow-up of this exciting lead revealed rapidly that unlike the niridazole types potent activity was widespread among the thiazolines, notwithstanding a wide variety of structural modifications. Work on the analogs of III has been described in the accompanying article.³ In this paper we describe the extension of this work to a series of nitrothiazoline urea derivatives (IV).⁴

$$O_2N \xrightarrow{N-CH_2CON(C_3H_7)_2}_{III} O_2N \xrightarrow{N-CH_2CON(C_3H_7)_2}_{III} O_2N \xrightarrow{N-R}_{NCNHR'}_{U}$$

Chemistry. Two routes were used to prepare the majority of these compounds, and they are depicted below. In procedure A, 2-aminothiazole, which is known to alkylate on the ring nitrogen, was treated with an alkyl halide to provide the 3-alkyl-2-iminothiazoline. The urea was then prepared by the action of an isocyanate on this material, and nitration provided the desired nitrothiazoline urea IV. To prepare some tertiary ureas a dialkylaminocarbamoyl chloride could be substituted for the isocyanate in procedure A. In those cases where the carbamoyl chloride was not readily available tertiary ureas could also be obtained by the fusion of an amine with phenyl 3-ethyl-4-thiazoline- $\Delta^{2,N}$ -carbamate prepared from 3-ethyl-2-iminothiazoline and phenyl chloroformate.†

It is of interest to note that in the attempt to prepare 1-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)-3,3-diisopropylurea *via* nitration of the corresponding urea only 1-(3-ethyl-5nitro-4-thiazolin-2-ylidine)-3-isopropylurea resulting from the loss of one of the isopropyl groups could be isolated. Procedure A

Procedure B involved formation of the 1-alkyl-3-(5-nitro-2-thiazolyl)ureas by the reaction of an isocyanate with 2amino-5-nitrothiazole, followed by alkylation with an alkyl halide of the urea anion formed by the action of NaH. This method affords the possibility of obtaining three isomeric products resulting from alkylation on the ring N, the N in the 2 position of the thiazole ring, or the terminal urea N.

$$\begin{array}{c} \overbrace{S}^{N-R} & \underbrace{C_{6}H_{5}OCOCl} & \overbrace{S}^{N-R} & \underbrace{\downarrow_{N}}_{H} \end{array} \\ & \overbrace{S}^{N-R} & \underbrace{\downarrow_{N}}_{NCO_{2}C_{6}H_{5}} & \xrightarrow{\downarrow_{N}}_{H} \end{array}$$

In many cases low yields were obtained, and, in several instances, isomeric materials were isolated in addition to IV, thus confirming the presence of several reactive sites. In most cases, however, it was possible to obtain the desired product without difficulty simply by recrystallization. The structure of the isomer isolated in this procedure was confirmed in several cases by demonstrating the identity of the products obtained in procedures A and B. In those cases where both routes were not utilized, the structure could be confirmed readily spectroscopically. Thus the nmr spectra of type IV reveal the singlet for the thiazoline ring proton shifted downfield to 8.9-9.1 ppm (in DMSO) in contrast to the isomeric aromatic compounds wherein this ring proton appears at 8.5 ppm. The ultraviolet spectra are also diagnostic for type IV since these compounds exhibit a pronounced hypsochromic shift in methanol in the presence of base (OH⁻). The isomeric aromatic compounds containing a proton on the N in the 2 position of the thiazole, *i.e.*, resulting from alkylation on the terminal N, exhibited a striking bathochromic shift in basic methanol. Alkylation at the 2-N however gave products whose spectra did not

[†]This procedure was developed by D. B. Capps and will be the subject of a separate communication.

						-N-R							
				Yield	O ₂ N S	NCONHK			Activity vs. S. mansoni in mices Drug Live worms				
No.	R	R'	Mp, °C	purified, %	Procedure	Purifn solvent	Formula	Analyses	Route X days	mg/kg per day	% mice positive	% reduction	
1	Et	Н	231-233	9	В	MeCN	C ₆ H ₈ N ₄ O ₃ S	C, H; N ^a	GX5	400	75	85	
2	Et	Me	244-245	47	B	<i>i</i> -PrOH	$C_{7}H_{10}N_{4}O_{3}S$	C, H, N C, H, N	D X 14	307	0	100	
2	17	Me	211 213	• •	b		0/11/01/40/30	0, 11, 11	G X 5	400	14	99	
									GX5	100	100	69	
3	CH₂C≡CH	Me	201-202	39	В	i-PrOH	C ₈ H ₈ N ₄ O ₃ S	C, H, N	G X 5	400	0	100	
									G X 5	100	100	74	
4	CH ₂ CH=CHCl	Me	155-158	9	В	MeOH	C8H9CIN4O3S	C, H, N	G X 5	200	0	100	
									G X 5	50	100	17	
5	$CH_2C(CH_3) = CCl_2$	Me	160-162	40	В	МеОН	C ₉ H ₇ Cl ₂ N ₄ O ₃ S	С, Н, N	G X 5	200	62	83	
6	$CH_2C(CH_3)=CH_2$	Me	135-136	25	B	MeOH	C ₉ H ₁₃ N ₄ O ₃ S	C, H, N	G X 5	200	63	89	
7	Me	Et	188-190	26	Α	<i>i</i> -PrOH	C ₇ H ₁₀ N ₄ O ₃ S	C, H, N	GX5	400	75	84	
8	CH SCH	Et	151 152	6	B-1	<i>i</i> -PrOH	CUNOS		GX5	100	100	0	
o	CH ₂ SCH ₃	EL	151-153	6	B-1	I-PIOH	$C_8H_{12}N_4O_3S_2$	С, Н, N	G X 5 G X 5	400 100	25 100	98 0	
9	Et	Et	176-178	23	Α	EtOAc	C ₈ H ₁₂ N ₄ O ₃ S	С, Н, N	G X 5 G X 5	400	100	100	
, ,	D.	151	170 170	23	71	LIOAC	C ₈ 11 ₁₂ 11 ₄ O ₃ 5	C, II, IV	GX5 GX5	100	87	15	
									D X 14	279	100	27	
10	HOCH ₂ CH ₂	Et	241-243	12	B-1	MeCN	C ₈ H ₁₂ N ₄ O ₄ S	C, H, N	D X 14	332	83	76	
	* *						5 12 4 4	, ,	G X 5	400	86	47	
									G X 5	100	100	0	
11	CH ₂ CH ₂ SCH ₃	Et	144-146	16	B-1	<i>i</i> -PrOH	C ₉ H ₁₄ N ₄ O ₃ S ₂	C, H, N	G X 5	400	75	85	
12	(CH ₂) ₂ SCH ₂ CH ₃	Et	114-116	16	B-1	<i>i</i> -PrOH	C ₁₀ H ₁₆ N ₄ O ₃ S ₂	C, H, N	G X 5	400	37	92	
13	(CH ₂) ₂ OCH ₂ CH ₃	Et	131.5-135	15	B-1	i-PrOH	$C_{10}H_{16}N_4O_4S$	C, H, N	GX5	400	14	98	
14	Pr	Et	156-158	17	А	<i>i</i> -PrOH	C ₉ H ₁₄ N ₄ O ₃ S	CUN	G X 5 G X 5	100 200	100 16	0 97	
14	ri -	Et	150-158	17	A	<i>i</i> ·rion	$C_{9}\Pi_{14}\Pi_{4}O_{3}S$	C, H, N	GX5 GX5	100	100	17	
15	CH,CH=CH,	Et	151-153	20	В	MeCN	C ₉ H ₁₂ N ₄ O ₃ S	C, H, N	D X 14	306	0	100	
	chi2011 0112	1.0	101 100	-0	~	Moert	09112114030	0, 11, 11	G X 5	400	14	99	
									G X 5	100	100	22	
16	CH₂C≡CH	Et	171-173	23	В	<i>i</i> -PrOH	C ₉ H ₁₀ N ₄ O ₃ S	C, H, N	D X 14	252	0	100	
									G X 5	400	0	100	
		_							G X 5	100	50	89	
17	CH ₂ CH=CHCI	Et	134-138	14	В	EtOAc-	C ₉ H ₁₁ CIN ₄ O ₃ S	C, H, N	GX5	400	0	100	
						petr ether			G X 5	100	12	99	
10	CH ₂ C(CH ₃)=CH ₂	Et	163-165	8	В	MeOH	CUNOS	C U N	G X 5 G X 5	50 200	100 100	47 49	
18 19	$CH_2C(CH_3)=CH_2$ $CH_2C(CH_3)=CCI_2$	Et	156-159	° 44	B	EtOAc	C ₁₀ H ₁₄ N ₄ O ₃ S C ₁₀ H ₁₂ Cl ₂ N ₄ O ₃ S	C, H, N C, H, N	GX5 GX5	200	28	49 95	
19	$\operatorname{CH}_2 \operatorname{C}(\operatorname{CH}_3) - \operatorname{CCI}_2$	Lt	150-159	74	D	LIUAC	$C_{10}\Pi_{12}CI_{2}\Pi_{4}O_{3}O$	C, H, N	GX5 GX5	200 50	100	35	
20	CH ₂ CHBrCH ₂ Br	Et	156-157	38	D	EtOH	C ₉ H ₁₂ Br ₂ N ₄ O ₃ S	C, H, N	GX5 GX5	400	12	97	
		2.	100 101	20	2	2.011	C9112D12114C30	., 11, 11	GX5 GX5	100	100	53	
21	CH(CH ₃) ₂	Et	167-170	26	В	i-PrOH	C ₉ H ₁₄ N ₄ O ₃ S	С, Н, N	D X 14	334	84	84	
	· • •						7 14 3-		G X 5	400	87	71	
2 2	Bu	Et	137-139	28	Α	i-PrOH	C ₁₀ H ₁₆ N ₄ O ₃ S	C, H; N ^b	D X 7	278	0	100	
									D X 7	270	0	100	
23	$CH_2CH(CH_3)_2$	Et	148-151	14	B-1	<i>i</i> -PrOH	C ₁₀ H ₁₆ N ₄ O ₃ S	C, H, N	D X 14	302	83	85	
									G X 5	400	88	50	

Werbel, et al.

													<i>1</i> -A
24 25	$CH_2CH(CH_2)_2$ $(CH_2)_4CH_3$	Et Et	156–158 114–117	27 23	B-1 B-1	<i>i</i> -PrOH <i>n</i> -Heptane	C ₁₀ H ₁₄ N ₄ O ₃ S C ₁₁ H ₁₈ N ₄ O ₃ S	C, H, N C, H, N	G X 5 G X 5 G X 5	200 400 100	75 0 75	92 100 72	lkyl-3-
26	(CH ₂) ₆ CH ₃	Et	99-101	37	B-1	i-PrOH-H ₂ O	$C_{13}H_{22}N_4O_3S$	C, H, N	G X 5	400	75	85	(3-a
2 7	$(CH_2)_7 CH_3$	Et	97-100	31	B-1	isooctane	C ₁₄ H ₂₄ N ₄ O ₃ S	C, H, N	D X 14 G X 5	322 400	100 100	0 0	lkyl
28	CH ₂ C ₆ H ₁₁	Et	201-202	26	B-1	<i>i</i> -PrOH	C ₁₃ H ₂₀ N ₄ O ₃ S	C, H, N	D X 14 G X 5	312 400	100 100	16 12	-5-niti
2 9	$(CH_2)_2C_6H_{11}$	Et	160-163	33	B-1	i-PrOH	C ₁₄ H ₂₂ N ₄ O ₃ S	C, H, N	D X 14 G X 5	336 400	33 100	92 38	ro-4-1
30	Et	CH ₂ CH=CH ₂	141-143.5	29	В	<i>i</i> -PrOH	$C_9H_{12}N_4O_3S$	C, H, N	D X 14 G X 5 G X 5	270 400 100	50 57 100	90 91 0	1-Alkyl-3-(3-alkyl-S-nitro-4-thiazolin-2-ylidene)ureas
31	HOCH ₂ CH ₂	CH ₂ CH=CH ₂	186-187	41	В	i-PrOH	C9H12N4O4S	C, H, N	G X 5 G X 5 G X 5	400 100	20 86	98 8	n-2-yl
32	CH ₂ CH ₂ OCH ₃	CH ₂ CH=CH ₂	103-105	3.5	B-1	MeCN-H ₂ O	C10H14N4O4S	C, H, N	D X 14 D X 14	259 91	0 83	100 58	idene
33	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	118-121	30	В	МеОН	C10H12N4O3S	C, H, N	G X 5	200	87	62)ure
34	CH ₂ C=CH	CH ₂ CH=CH ₂	144.5-147.5	30	В	МеОН	$C_{10}H_{10}N_4O_3S$	C, H, N	G X 5 G X 5	200 50	16 100	99 0	as
35	CH ₂ CH=CHCl	CH ₂ CH=CH ₂	141-143	7	В	EtOAc-	C ₁₀ H ₁₁ ClN₄O ₃ S	C, H, N	G X 5	200	12	99	
36	$CH_2C(CH_3)=CH_2$	CH ₂ CH=CH ₂	112-115	34	В	petr ether	C II NOS	C U N	GX5	50	100 100	26 10	
37	$CH_2C(CH_3)=CCI_2$ $CH_2C(CH_3)=CCI_2$	$CH_2CH=CH_2$ $CH_2CH=CH_2$	141-143	34 40	В	EtOH MeOH	C ₁₁ H ₁₄ N ₄ O ₃ S C ₁₁ H ₁₂ Cl ₂ N ₄ O ₃ S	C, H, N C, H, N	G X 5 G X 5	200 200	63	53	
38	Et	$CH(CH_3)_2$	163-166	12	A	EtOH-H ₂ O	$C_{9}H_{14}N_{4}O_{3}S$	C, H, N C, H, N	G X 5	400	100	44	
39	Et	Bu	111-115	48	Â	<i>i</i> -PrOH	$C_{10}H_{16}N_4O_3S$	C, H, N	D X 14	347	66	90	
• • •		24			••	111011	01011614030	0, 11, 11	G X 5	400	87	70	
40	Et	$C(CH_3)_3$	134-136	20	B-1	<i>i</i> -Pt ₂ O	C10H16N4O3S	C, H, N	G X 5	400	100	9	
41	Et	C_8H_{17}	111-113	28	Α	i-PrOH	$C_{13}H_{20}N_4O_3S$	C, H, N	D X 14	355	100	0	
									G X 5	400	100	35	
				Alkyl)-3-(3-ara	lkyl-5-nitr	o-4-thiazolin-2-yl	idene)ureas						Jot
42	CH₂C ₆ H₅	Ме	188.5-190	49	B-1	<i>i</i> -PrOH	$C_{12}H_{12}N_4O_3S$	C, H, N	G X 5 G X 5	200 50	0 100	$100 \\ 0$	urna
43	CH₂C₀H₅	Et	148-150	41	B-1	i-PrOH	C13H14N4O3S	C, H, N	D X 14	285	0	100	d oj
	*-03						-1314- 4- 55	-,,	GX5	100	Õ	100	ſM
									G X 5	50	37	70	edi
44	CH ₂ C ₆ H ₄ -3-Br	Et	156-159	38	B-1	<i>i</i> -PrOH	C13H13B1N4O3S	C, H, N	G X 5	400	0	100	icin
15	CUCUAD-	Et	164-166.5	5	D 1	: D-OU	C IL D-N O S	C U N	G X 5 G X 5	100	37 0	95	ial (
45	CH ₂ C ₆ H ₄ -4-Br	El	104-100.3	5	B-1	<i>i</i> -PrOH	C ₁₃ H ₁₃ BrN ₄ O ₃ S	C, H, N	GX5 GX5	100 50	87	100 73	Che
46	CH ₂ C ₆ H ₄ -2-Cl	Et	126–127 ^{<i>h</i>}	44	B-1	i-PrOH	C ₁₃ H ₁₃ ClN ₄ O ₃ S	C, H, N	G X 5 G X 5	400	0	100	mi
	2 0 4						-15 15- 4 5-	-, ,	G X 5	100	75	86	strj
47	CH ₂ C ₆ H ₄ -3-Cl	Et	158.5-161.5	17	B-1	EtOAc-iso- octane	$C_{13}H_{13}CIN_4O_3S$	C, H, N	G X 5 G X 5	400 50	25 75	94 31	lournal of Medicinal Chemistry, 1972, Vol. 15, No.
48	CH ₂ C ₆ H ₄ -4-Cl	Et	142–142.5 ⁱ	37	B-1	EtOH	C ₁₃ H ₁₃ ClN ₄ O ₃ S	C, H, N	D X 14	286	0	100	172
	204						13 13 4 5		G X 5	400	0	100	70
40	CHCH2E	E4	161 162	1.0	D 1	(DOLL	C L ENOS	C U N	GX5	50	25	94	, i
49	CH ₂ C ₆ H ₄ -3-F	Et	161-163	18	B-1	<i>i</i> -PrOH	$C_{13}H_{13}FN_4O_3S$	C, H, N	G X 5 G X 5	400 50	0 100	100 54	5
5 0	CH ₂ C ₆ H ₃ -2,4-Cl ₂	Et	156.5-159.5	35	B-1	i-PrOH	C ₁₃ H ₁₂ Cl ₂ N ₄ O ₃ S	C, H, N	GX5 GX5	400	57	91	No
51	CH ₂ C ₆ H ₃ -3,4-Cl ₂	Et	202-206	46	B-1	MeCN	$C_{13}H_{12}Cl_2N_4O_3S$	C, H, N	D X 14	335	84	83	. 9
							··· ·· · · ·		G X 5	400	100		
											100	37	
5 2	CH ₂ C ₆ H ₃ -2,6-Cl ₂	Et	190-191	89	B-1		$\mathrm{C_{13}H_{12}Cl_2N_4O_3S}$	C, H, N	GX5 GX5	400	100	37 16	957

				Yield					A Dr	•	. <i>mansoni</i> in Live	in miceg worms
No.	R	R'	Mp,°C	purified, %	Procedure	Purifn solvent	Formula	Analyses	Route X days	mg/kg per day	% mice positive	% reduction
53	CH ₂ C ₆ H ₄ -4-NO ₂	Et	171-172	20	A	i-PrOH	C ₁₃ H ₁₃ N ₅ O ₅ S	C, H, N	D X 14 G X 5 G X 5	328 200 50	0 12 100	100 99 17
54	CH ₂ C ₆ H ₃ -4-NO ₂ -2-OH	Et	195-197	13	B-1	<i>i</i> -PrOH	C ₁₃ H ₁₃ N ₅ O ₆ S · C ₃ H ₈ O	C, H; N ^c	G X 5 G X 5	400	100	0
55	CH ₂ C ₆ H ₄ -2-Me	Et	183-185	41	B-1	EtOH	C14H16N4O3S	C, H, N	G X 5	400	37	94
56	CH ₂ C ₆ H ₄ -3-Me	Et	128-131	26	B-1	i-PrOH	C14H16N4O3S	C, H, N	G X 5	400	12	99
	* • •								G X 5	100	100	0
57	CH ₂ C ₆ H ₄ -4-Me	Et	169.5-171.5	48	B-1	MeCN	C14H16N4O3S	C, H, N	D X 14	304	0	100
									G X 5	400	100	27
58	CH₂C ₆ H₄-2-CN	Et	175-178	23	B-1	EtOAc	C14H13N5O3S	С, Н, N	G X 5	200	0	100
									G X 5	50	75	88
59	CH ₂ C ₆ H ₄ -3-CN	Et	195-198	44	B-1	MeCN	C14H13N5O3S	C, H, N	G X 5	200	0	100
									G X 5	50	100	68
60	CH ₂ C ₆ H ₄ -4-CN	Et	178-182	10	B-1	i-PrOH	C14H13N5O3S	С, Н, N	G X 5	400	0	100
									G X 5	100	25	96
61	CH₂C ₆ H₄-4-OMe	Et	175-178	45	B-1	i-PrOH	C14H16N4O4S	C, H, N	G X 5	400	86	0
6 2	$CH_{2}C_{6}H_{3}-2,4-Me_{2}$	Et	156-159	42	B-1	<i>i</i> -PrOH	$C_{15}H_{18}N_4O_3S$	C, H, N	D X 14	308	0	100
									G X 5	400	100	30
63	$CH_{2}C_{6}H_{3}-3,4-Me_{2}$	Et	156-158	24	B-I	<i>i</i> -PrOH	C ₁₅ H ₁₈ N ₄ O ₃ S	C, H, N	G X 5	400	100	7
64	CH ₂ C ₆ H ₄ -3-CO ₂ Me	Et	209-211.5	37	B-1	MeCN	$C_{15}H_{16}N_4O_5S$	C, H, N	G X 5	400	100	0
65	CH ₂ C ₆ H ₂ -2-Cl- 3,4(OCH ₂ O)	Et	180-182	51	B-1	EtOAc-iso- octane	$C_{14}H_{13}ClN_4O_5S$	С, Н, N	G X 5	400	100	0
66	$CH_2C_6H_2-2,4,6-Me_3$	Et	226.5-230	35	B-1	MeCN	C16H20N4O3S	C, H, N	G X 5	400	100	0
67	CH ₂ C ₆ H ₄ -3-OiPr	Et	170.5-173.5	45	B-1	<i>i</i> -PrOH	C16H20N4O4S	C, H, N	G X 5	400	100	0
68	CH ₂ C ₆ H ₄ -4-OCH ₂ C ₆ H ₅	Et	144-145.5	44	B-1	EtOH	$C_{20}H_{20}N_4O_4S$	C, H, N	D X 14	302	100	15
									G X 5	400	86	11
6 9	CH(CH ₃)C ₆ H ₅	Et	179-181	23	B-1	i-PrOH	C14H16N4O3S	C, H, N	G X 5	400	25	91
7 0	CH ₂ -α-naphthyl	Et	170.5-174	42	В	EtOH	C17H16N4O3S	C, H, N	G X 5	400	86	28
71	CH₂C ₀H₅	CH ₂ CH=CH ₂	115.5-117	31	B-1	EtOH	$C_{14}H_{14}N_4O_3S$	C, H, N	G X 5	400	0	100
									G X 5	50	87	67
72	CH ₂ C ₆ H ₄ -2-Cl	CH ₂ CH=CH ₂	94-96	11	В	C ₆ H ₆	C14H13ClN4O3S	C, H, N	G X 5	400	0	100
									G X 5	100	86	47
73	CH ₂ C ₆ H ₄ -3-Cl	CH ₂ CH=CH ₂	99-102	22	В	C6H6	C14H13ClN4O3S	C, H, N	G X 5	200	43	85
74	CH₂C ₆ H₄-4-Cl	CH ₂ CH=CH ₂	165.5-167.5	17	В	C6H6	C14H13ClN4O3S	С, Н, N	G X 5	400	87	65
75	CH₂C ₆ H₄-2-NO₂	CH ₂ CH=CH ₂	114-115	10	В	EtOAc	C14H13N5O5S	C, H, N	G X 5	400	12	99
									G X 5	100	100	64
76	CH ₂ C ₆ H ₄ -3-NO ₂	CH ₂ CH=CH ₂	163-164	28	В	EtOAc	C14H13N5O5S	H; C, N ^d	G X 5	400	0	100
									G X 5	100	57	87
77	CH₂C ₆ H₄-4-NO₂	CH ₂ CH=CH ₂	148-150	23	В	EtOAc	C14H13N5O5S	Н; С, N ^e	G X 5	400	37	93
78	CH₂C ₆ H₅	CH2-c-CHCH2O	161-164	42		EtOH	C14H14N4O4S	C, H, N	G X 5	200	100	13
79	CH ₂ C ₆ H ₅	CH₂CHOHCH₂OH	145-149	16		MeOH	C14H16N4O5S	C, H, N	G X 5	400	100	20
80	CH ₂ C ₆ H ₅	CH2CHBrCH2Br	136-138	58	D	EtOH	$C_{14}H_{14}Br_2N_4O_3S$	C, H, N	G X 5	400	100	16
81	CH ₂ C ₆ H ₅	(CH ₂) ₃ OCH ₃	139-141	37	С	<i>i</i> -PrOH	$C_{15}H_{18}N_4O_4S$	C, H, N	G X 5	400	100	0
82	CH₂C ₆ H₅	(CH ₂) ₃ SCH ₃	135.5-137.5	75	С	i-PrOH	$C_{15}H_{18}N_4O_3S_2$	H , N , S ; C ^{<i>f</i>}	G X 5	400	100	3
83	CH ₂ C ₆ H ₅	CH(CH ₃) ₂	167-169	43	B-1	i-PrOH	C14H16N4O3S	C, H, N	G X 5	100	87	48
84	CH ₂ C ₆ H ₄ -4-NO ₂	(CH ₂) ₃ CH ₃	122-125	23	B-1	C ₆ H ₆	C15H17N5O5S	C, H, N	G X 5	400	37	89
85	CH ₂ C ₆ H ₅	$C(CH_3)_3$	186-186.5	15	B-1	<i>i</i> -PrOH	C ₁₅ H ₁₈ N ₄ O ₃ S	C, H, N	G X 5	400	100	0
86	CH ₂ C ₆ H ₅	$(CH_2)_5CH_3$	104-105	27	B-1	i-PrOH	C ₁₇ H ₂₂ N ₄ O ₃ S	C, H, N	G X 5	400	87	5

Werbel, et al.

1-	Alk	vl-3	3-(:	3-a	lky	<i>n-2</i>	5-n	itro	o-4	l-th	iaz	zol	in-	2-J	lic	ler	ie)	ure	eas			
16	0		0	30	0	0	100	84	7	38	72	29	0	0	68	54	68	35	50	0	66	53
100	100		100	100	100	100	0	75	100	87	83	100	100	100	83	100	100	86	75	100	17	100
353	400		297	400	314	400	329	400	345	400	300	400	400	400	356	400	413	400	400	400	249	100
D X 14	G X 5		D X 14	G X 5	D X 14	G X 5	D X 14	G X 5	D X 14	G X 5	D X 14	G X 5	G X 5	G X 5	D X 14	G X 5	D X 14	G X 5	G X 5	G X 5	D X 14	G X 5
C, H, N	С, Н, N		C, H, N		C, H, N		C, H, N		C, H, N		C, H, N		C, H, N	C, H, N	C, H, N		Ĥ,	H,	C, H, N	Ĥ,		
C,3H34N4O3S	C ₁₅ H ₁₆ N ₄ O ₅ S		C, H, N _a O _a S		C, H, N, O,S		C ₁₂ H ₁₈ N ₄ O ₃ S		C ₁ ,H ₁₄ N ₄ O ₃ S		C ₁₇ H ₂₀ N ₄ O ₃ S		C ₁ ,H,N,O ₃ S	C, H, N O S	C, H, N, O,S		C, H, NAO S	C, H, NOS	C, H, N, O, S	C, H, NO S,		
i.PrOH	i-PrOH	ellaneous Ureas	i-PrOH		i-PrOH		i-PrOH		i-PrOH		EtOH		i-PrOH	MeCN	i-PrOH		i-PrOH	i-PrOH	i-PrOH	MeCN		
B-1	J	Misc	B		B-1		Α		B-1		B-1		C	ပ	B-1		B-I	B-1	B-1	C		

17

33-136

(CH₂)₁₁CH₃ CH₂CO₂C₂H₅

CH₂C₆H

83

CH₂C₆H

85-86

17 25 32

179-180 158-160

26

95-197

с-С₃Н₃С₆Н₅⁷

5 5 5

89

48 42 25

35.5-138.5

124-127 183-185

CH₂C₆H₅ (CH₂)₂C₆H₅

4

203.5-206

C₆H₁₁

CH₂C₆H₅

CH,C,H.

CH₃C₆H

95 95

210-212

C₆H₁₁

C₆H₅

CH₂C₆H₅

Ξ

90 91 91 92 93

C₆H₅

23

35.5-138

Ś

152.5-154 232-233.5

Et Et Et S0₂C₆H₄4-CH₃

CH₁)₁O(CH₁)₂OC₆H₅

CH,C,H

(CH₂)₂C₆H₅ (CH₂)₃OC₆H₅ (CH₂)₂OCH₂C₆H.

^aN: calcd, 25.91; found, 26.40. ^bN: calcd, 20.57; found, 21.06. ^cN: calcd, 16.40; found, 15.98. ^dC: calcd, 46.3; found, 45.8. N: calcd, 19.3; found, 18.8. ^eC: calcd, 46.3; found, 45.8. N: calcd, 19.3; found, 18.8. ^eC: calcd, 17.50; found, 17.48. ^gCroups of 6 and 8 animals, respectively, were used in the diet and gavage studies. The worm burden of the controls averaged 5 per mouse. ^hResolidifies and remelts 152–154°. ⁴Resolidifies and remelts 152–154°. ⁴Resolidifies and remelts 152–154°. 100 100 G X 5 Viridazole 15 per mouse. found, 18.8.

O,N

shift upon changing from acid to basic methanol, although on occasion it appeared that these tertiary derivatives were unstable in basic methanol as evidenced by the rapid development of a band at high wavelength.

In those instances where the isocyanate was in short supply, it was found convenient to utilize a 3-alkyl-2-imino-5-nitro-4-thiazoline as the starting material (procedure C).

Procedure C

$$\xrightarrow{\text{N-Et}}_{\text{O}_2\text{N}} \xrightarrow{\text{N-Et}}_{\text{O}_2\text{N}} \xrightarrow{\text{HCl}}_{\text{O}_2\text{N}} \xrightarrow{\text{O}_2\text{N}}_{\text{S}} \xrightarrow{\text{N-Et}}_{\text{NH}} \cdot \text{HCl}$$

$$\xrightarrow{\text{R'NCO}}_{\text{O}_2\text{N}} \xrightarrow{\text{N-Et}}_{\text{S}} \xrightarrow{\text{N-Et}}_{\text{NCONHR'}}$$

Thus acid hydrolysis of N-(3-ethyl-5-nitro-4-thiazolin-2ylidene)-2,2-dimethylpropionamide⁵ afforded 3-ethyl-2imino-5-nitro-4-thiazoline (V) isolated as the hydrochloride salt. Treatment with an isocyanate then provided the desired urea. These intermediates also allowed the synthesis of bis urea VI (108) as well as the sulfonyl urea VII (100).

$$O_{2}N \xrightarrow{N-Et} Et-N$$

$$O_{2}N \xrightarrow{S} NCONH(CH_{2})_{6}NHCON \xrightarrow{S} NO_{2}$$

$$VI$$

$$VI$$

$$O_{2}N \xrightarrow{S} N-CH_{2}C_{6}H_{5}$$

$$O_{2}N \xrightarrow{S} NCONHSO_{2}C_{6}H_{4}-4-CH_{3}$$

$$VII$$

Using the functionalities provided by these general synthetic routes we were able to prepare still other structural variations. Thus bromination of 1-allyl-3-(3-benzyl-5-nitro-4-thiazolin-2-ylidene)urea (procedure D) provided the dibromo derivative VIII, and its treatment with *m*-chloroperbenzoic acid provided epoxide IX from which the corresponding 2,3-dihydroxy derivative was obtained. From 1ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene]urea obtained by the alkylation procedure were prepared the chloro derivative X by treatment with SOCl₂ and the acetate (XI) and caproate esters by treatment with acetic anhydride and hexanoyl chloride.

$$\begin{array}{c} & \overbrace{O_2N}^{N-CH_2C_6H_5} \\ O_2N & \overbrace{S}^{N-CH_2C_6H_5} \\ O_2N & \overbrace{S}^{N-CH_2C_6H_5} \\ O_2N & \overbrace{S}^{N-CH_2C_6H_5} \\ O_2N & \overbrace{S}^{N-CH_2CH_2Cl} \\ IX \\ & \overbrace{IX}^{N-CH_2CH_2Cl} \\ X & X1 \end{array}$$

An attempt to prepare the nitroso analog of the active series failed when nitrosation of 1-ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea provided instead the *N*-nitroso derivative XII.

It was of interest to examine the corresponding thiourea (XIII). This was prepared by nitration of 1-ethyl-3-(3-ethyl-

Table II. Miscellaneous Structures. Activity vs. S. mansoni in Mice

			Dr	ug	Live worms		
No.	R	R'	Route X days	mg/kg per day	% mice positive	% reduction	
101	Et	CONMe ₂	G X 5	400	0	100	
		-		50	100	27	
102	Et	CONEt ₂	G X 5	100	87	59	
103	Et	CO-morpholino	G X 5	400	0	10 0	
				100	87	19	
104	Et	$CON(CH_2)_4$	G X 5	200	100	36	
105	Et	CONPr ₂	G X 5	200	100	21	
106	CH ₂ COC ₆ H ₄ -3-NO ₂	CONHEt	G X 5	400	87	26	
1 0 7	Et	CONHCH ₂ CH ₂ Cl	G X 5	200	87	29	
		Et-N					
1 08	Et	CONH(CH ₂) ₆ NHCON个S ^人 NO ₇	G X 5	400	100	0	
109	CH ₂ CH ₂ Cl	CONHEt	G X 5	400	0	100	
				100	100	38	
110	CH ₂ CH ₂ OCOCH ₃	CONHEt	G X 5	400	25	93	
111	CH ₂ CH ₂ OCOC ₆ H ₁₃	CONHEt	GX5	400	100	6	
112	Et	CONHEt (4Me)	D X 14	376	100	Õ	
	21		GX5	400	62	48	
113	N	-(CH _a), N	D X 14	332	100	24	
	O ₂ N S	$(CH_2)_4 - N - N$ NCONHET NO ₂ NCONHET					
114	O ₂ N S N	$CH_2CH=CH-CH_2-N$ NCONHEt NCONHEt	D X 14	300	100	0	
115		Et Et-N NCON N-CON S NO ₂	G X 5	400	100	0	
116	Et	CSNHEt	G X 5	400	100	0	
	Niridazole		D X 14	249	17	99 9	
			G X 5	100	100	53	

4-thiazolin-2-ylidene)-2-thiourea which was obtained through the reaction of ethyl isothiocyanate with 3-ethyl-2-iminothiazoline.

Biology. The compounds described herein were supplied to Dr. Paul E. Thompson and coworkers of these laboratories for evaluation against a Puerto Rican strain of S. mansoni in mice.[‡] As in previous work, drugs were administered in a powdered diet (D) for 14 days or by gavage (G) in 10 mg/kg of aqueous 1% hydroxyethyl or carboxymethyl cellulose for 3-10 days. The data are summarized in Tables I and II and it is seen that schistosomicidal activity is widespread among the ureas. Two of the 1-(alkyl)-3-(3-benzyl-5-nitro-4-thiazolin-2-ylidene)ureas (compounds 43, 45) were the most potent substances examined, completely eliminating live schistosomes from infected mice at a gavage dose of 100 mg/kg daily for 5 days. Compounds 2, 3, 4, 9, 15, 16, 17, 22, 25, 32, 42, 44, 46, 47, 49, 53, 57, 58, 59, 60, 62, 71, 72, 76, 91, 101, 103, and 109 also cured all of the mice at somewhat higher dose levels ranging from 200 to 400

mg/kg daily by gavage for 5 days or from 252 to 328 mg/kg daily for 14 days by drug-diet. Many other analogs, although not curative, effected a marked reduction in live schistosomes at similar gavage or daily diet doses.§

One cannot deduce strict structure-activity relationships from the available data, however, several comments may be pertinent. Thus among the alkyl derivatives, simple alkyl or olefinic groups on either the urea or thiazole nitrogens retained activity while drastic lengthening of the carbon chain or excessive branching severely reduced activity. Among the 3-benzyl derivatives a variety of monosubstituted derivatives retained strong activity while multiple substitution was dystherapeutic. Once again branching of the substituent on the urea N or lengthening the chain decreased activity. More drastic structural variations also tended to diminish activity (i.e., VI, VII, XIII). Bis substitution on the urea N with alkyl groups retained activity as long as the group was small. Bis analogs of the active compounds, however, exhibited little or no activity. It is interesting that a haloalkyl substituent on the ring N retained activity while the same grouping on the urea N (107) was essentially inactive. The only compound prepared (112) with a substituent at the 4 position of the thiazoline nucleus had very little activity and this avenue was not explored further. The thio analog XIII (116) also was inactive.

[‡]For a description of test methods see ref 6.

[§] P. E. Thompson and R. E. Voigtman, unpublished results, Parke, Davis and Company, Ann Arbor, Mich.

Twelve compounds (9, 17, 16, 24, 25, 43, 46, 48, 49, 53, 58, and 102) were examined against the Puerto Rican strain of *S. mansoni* in rhesus monkeys, and 9 of them (9, 43, 46, 16, 17, 24, 25, 58, and 102) showed significant antischisto-somal activity in this host. Drugs were given orally by gavage twice daily 5 days a week for 1 or 2 weeks. Compounds 9, 43, 25, and 102 furthermore were curative at well-tolerated doses of 50-100 mg/kg per day for 5-10 days. In dogs, however, at doses double the therapeutically effective level in monkeys, intolerance variably reflected by emesis, convulsions, incoordination, and death was observed, and further studies on this series were abandoned.

Experimental Section#

Procedure A. 1-Ethyl-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)urea (9). 3-Ethyl-2-iminothiazoline Hydriodide.⁷ A solution of 100 g (1.0 mole) of 2-aminothiazole and 200 g (1.28 moles) of EtI in 800 ml of *i*-PrOH was heated under reflux for 24 hr, cooled, and filtered to give 182 g (74%) of the product as a tan solid, mp $106-110^{\circ}$.

1-Ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea Hydrochloride. To a solution of 50 g (0.2 mole) of 3-ethyl-2-iminothiazoline hydriodide in 85 ml of C_sH_sN was added 14.2 g (0.2 mole) of ethyl isocyanate, and the mixture was heated on the steam bath for 2 hr. The mixture was cooled and filtered to remove C_sH_sN HI. Ether was added to the filtrate, and the mixture was filtered to remove additional C_sH_sN HI. The solvents were removed *in vacuo*, and the residual oil was washed with H₂O, taken up in Et₂O, dried, and treated with *i*-PrOH saturated with HCl gas. The resulting solid was collected and recrystd first from *i*-PrOH and then from EtOH to give 21.6 g of the product (46%), mp 192–195°. Anal. ($C_sH_{13}N_3OS \cdot HCl$) C, H, N.

1-Ethyl-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)urea (9). To 15 ml of concd H_2SO_4 at 0-10° was added in portions 6 g (0.0255 mole) of 1-ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea hydrochloride. The solution was maintained at 0-10° and 1.6 g (0.0255 mole) of red fuming HNO₃ was added dropwise. The mixture was allowed to stir in the cold for 1 hr, was then allowed to warm to room temp, and was poured into about 250 ml of iced H₂O. The yellow solid was collected and recrystd from *i*-PrOH and then from EtOAc to give 1.4 g of the product (23%), mp 176-178°.

3-Alkyl-2-imino-4-thiazolines. The following intermediates were prepared similarly to 3-ethyl-2-imino-4-thiazoline described above: 3-butyl-2-imino-4-thiazoline hydrobromide, mp 115–118°, in 40% yield after recrystallization from EtOH-Et₂O, used as is; 2-imino-3-(*p*-nitrobenzyl)-4-thiazoline hydrobromide;⁸ 3-methyl-2imino-4-thiazoline hydriodide, mp 181–184°;⁷ and 2-imino-3propyl-4-thiazoline, used crude after removing the solvent from the reaction mixture.

1-Alkyl-3-(3-alkyl-4-thiazolin-2-ylidene)ureas. The following intermediates were prepared similarly to 1-ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea described above: 1-butyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea hydrochloride, mp 109-111°, in 46% yield after recrystallization from toluene [Anal. (C10 H17 N3OS' HCl) C, H, N]; 1-cyclohexyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea hydro-chloride, mp 124-126°, in 26% yield after recrystallization from H₂O [Anal. (C₁₂H₁₉N₃OS HCl) C, H, N]; 1-(3-ethyl-4-thiazolin-2ylidene)-3-octylurea hydrochloride 0.33H₂O, mp 84-89°, in 45% yield after recrystallization from i-PrOH-Et₂O [Anal. (C14H25N3OS. HC1.0.33H₂O) H, N. C: calcd, 51.59; found, 50.98. H₂O: calcd, 1.84; found, 1.20]; 1-(3-butyl-4-thiazolin-2-ylidene)-3-ethylurea, mp 68-70°, in 58% yield after recrystallization from EtOAc-isooctane [Anal. (C10H17N3OS) C, H, N]; 1-ethyl-3-(3-methyl-4-thiazolin-2-ylidene)urea hydrochloride, mp 224-229° dec, in 69% yield after recrystallization from i-PrOH (Material was not analytically pure and was nitrated as is.); 1-ethyl-3-[3-(p-nitrobenzyl)-4-thiazolin-2-ylidene]urea, mp 109–111.5°, in 65% yield after recrystallization from dil EtOH [Anal. ($C_{13}H_{14}N_4O_3S$) C, H, N]; and 1-ethyl-3-(3-propyl-4-thiazolin-2-ylidene)urea, mp 74-78°, in 63.4% yield used after reprecipitation from Me₂CO with petr ether.

3-(3-Ethyl-5-nitro-4-thiazolin-2-ylidene)-1,1-dimethylurea (101).

To a solution of 12.8 g (0.05 mole) of 3-ethyl-2-imino-4-thiazoline hydriodide in 50 ml of C_sH_sN was added 6 g (0.056 mole) of dimethylcarbamoyl chloride, and the mixture was heated on the steam bath for 5 hr. The solvent was removed *in vacuo*, and the residue was dissolved in a small volume of H_2O and extracted with Et_2O . The extracts were dried, and the solvent was removed *in vacuo* to provide 6.2 g (62%) of 3-(3-ethyl-4-thiazolin-2-ylidene)-1,1 dimethylurea as a tan-orange solid which could not be readily purified further. This material was added in portions to 15 ml of concd H_2SO_4 at 10°. To this solution at $0-5^\circ$ was added dropwise 2.0 g (0.031 mole) of red fuming HNO₃. The mixture was allowed to warm to room temp, stirred for 3 hr, and poured into iced H_2O . The solid was collected and recrystd from *i*-PrOH to give 0.4 g (6%) of the product, mp 195–198°. Anal. ($C_8H_12N_4O_3S$) N. C: calcd, 39.34; found, 38.91. H: calcd, 4.95; found, 4.53.

1,1-Diethyl-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene) urea (102). To 25.6 g (0.1 mole) of 3-ethyl-2-imino-4-thiazoline hydriodide in 100 ml of C₅H₅N was added 14.5 g (0.107 mole) of diethylcarbamoyl chloride, and the mixture was heated on the steam bath for 5 hr. The solvent was removed *in vacuo*, and the residue was triturated with H₂O. The solid was collected and dried in air to give 18 g (79%) of 1,1-diethyl-3-(3-ethyl-4-thiazolin-2-ylidene) urea, mp 76-78.5°, as an orange-rust solid. This material (13.0 g, 0.061 mole) was added in portions to 40 ml of concd H₂SO₄ at 10°. To this cold solution was added dropwise 3.8 g (0.061 mole) of red fuming HNO₃. The reaction mixture was stirred for 0.5 hr at 0-10°, allowed to warm to room temp, stirred an additional 0.5 hr, and poured into 400 ml of iced H₂O. The sticky red precipitate was collected and recrystd twice from *i*-PrOH to give 2.1 g (13%) of the product as gold crystals, mp 140-142°. Anal. (C₁₀H₁₆N₄O₃S) C, H, N.

N-(3-Ethyl-5-nitro-4-thiazolin-2-ylidene)-4-morpholinecarboxamide (103) was prepared similarly from N-(3-ethyl-4-thiazolin-2ylidene)-4-morpholinecarboxamide in 66% yield after recrystallization from *i*-PrOH, mp 215-219°. *Anal.* (C₁₀H₁₄N₄O₄S) C, H, N.

N-(3-Ethyl-5-nitro-4-thiazolin-2-ylidene)-1-pyrrolidinecarboxamide (104) was prepared similarly from N-(3-ethyl-4-thiazolin-2ylidene)-1-pyrrolidinecarboxamide in 25% yield, mp 245-248° after recrystallization from *i*-PrOH. Anal. ($C_{10}H_{14}N_4O_3S$) C, H, N. Phenyl 3-Ethyl-4-thiazoline- $\Delta^{2,N}$ -carbamate. To a solution of

Phenyl 3-Ethyl-4-thiazoline- $\Delta^{2,N}$ -carbamate. To a solution of 102 g (0.65 mole) of phenyl chloroformate in 1 l. of THF cooled to 15° was added a solution of 81 g (0.63 mole) of 3-ethyl-2-imino-thiazoline and 91 ml (0.65 mole) of triethylamine in about 200 ml of THF. The resulting solid was collected and washed with ether, the filtrate was added to the original reaction mixture, and the solvents were removed *in vacuo*. The residue was washed with H₂O and recrystd from dil EtOH to give 146.5 g (94%) of the product, mp 108.5-111.5°. Anal. (C₁₂H₁₂N₂O₂S) C, H, N.

N-(3-Ethyl-4-thiazolin-2-ylidene)-4-morpholinecarboxamide. A mixture of 10.0 g (0.04 mole) of phenyl 3-ethyl-4-thiazoline- $\Delta^{2,N}$ -carbamate and 4.0 ml (0.046 mole) of morpholine was heated for 50 min at 145–150°. The cooled mixture was taken up in 300 ml of C₆H₆ and extracted with 60 ml of 1 *N* NaOH. The aqueous extract was extracted with 100 ml of C₆H₆, the combined C₆H₆ extracts were washed twice with 5-ml portions of satd NaCl solution and dried, and the solvent was removed *in vacuo*. The residual oil was dissolved in 30 ml of C₆H₆, 300 ml of warm cyclohexane was added, and the mixture was chilled. The solid was collected and recrystd from H₂O and then from a mixture of toluene and cyclohexane to give 6.1 g (63%) of the product, mp 144–146.5°. Anal. (C₁₀H₁₈N₃O₂S) C, H, N.

N(3-Ethyl-4-thiazolin-2-ylidene)-1-pyrrolidinecarboxamide. This was prepared similarly to the morpholine analog described above except that it was heated for 1 hr at 102°. Recrystallization from cyclohexane gave 83% of the product, mp 94–95°. *Anal.* ($C_{10}H_{15}N_3SO$) C, H, N.

3-(3-Ethyl-5-nitro-4-thiazolin-2-ylidene)-1, 1-dipropylurea (105). To 25.6 g (0.1 mole) of 3-ethyl-2-imino-4-thiazoline hydriodide in 100 ml of C_sH_sN was added 17 g of dipropylcarbamoyl chloride, and the mixture was heated on the steam bath for 5 hr. The solvent was removed in vacuo, and the semisolid residue was triturated with H₂O and allowed to remain overnight. The dark oil which was present was extracted with ether. The extracts were washed with water and dried over MgSO₄. The solvent was removed in vacuo, and the residual dark oil (18.4 g) was used as is in the next step. The 3-(3-ethyl-4-thiazolin-2-ylidene)-1,1-dipropylurea (18 g, 0.0705 mole) was added dropwise to 25 ml of concd H_2SO_4 , cooled in an ice bath. To this cold solution $(0-10^\circ)$ was added dropwise 4.4 g of red fuming HNO₃. The mixture was stirred cold for 20 min and poured into 250 ml of iced water. The yellow solid was collected and recrystd from *i*-PrOH to give 5.8 g (28%) of the product, mp 161-165°. Anal. $(C_{12}H_{20}N_4O_3S)C, H, N.$

[#]Melting points (corrected) were taken on a Thomas-Hoover capillary melting point apparatus. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within $\pm 0.4\%$ of theoretical values. Nmr data were obtained on a Varian A-60 instrument.

1-(3-Ethyl-5-nitro-4-thiazolin-2-ylidene)-3-isopropylurea (38). To 15 ml of concd H_2SO_4 , cooled in an ice bath, was added 8.8 g (0.0344 mole) of 1-(3-ethyl-4-thiazolin-2-ylidene)-3,3-diisopropylurea. To this soln at 0-10° was added 2.2 g of red fuming HNO₃. The mixture was stirred cold briefly and filtered. The solid was recrystd from 2-PrOH to give 2.0 g of a yellow solid, mp 144-145°. This material was dissolved in EtOH and made basic by the addition of 1 N NaOH. The yellow ppt was collected and dried to give 1.1 g (12%) of the product, mp 163-166°. Anal. (C₉H₁₄N₄O₃S) C, H, N.

3-(3-Ethyl-4-thiazolin-2-ylidene)-1, 1-diisopropylurea. To a soln of 25.6 g (0.1 mole) of 3-ethyl-2-imino-4-thiazoline hydriodide in 100 ml of pyridine was added 17 g (0.104 mole) of diisopropyl-carbamoyl chloride. The mixture was heated on the steam bath for 4.5 hr, and the solvent was removed *in vacuo*. The residue was triturated with water and filtered to give 15 g of a yellow-brown solid. This was taken up in Et₂O and dried, and the solvent was allowed to evaporate to provide 9 g (35%) of the product, mp 82-84°. Anal. (C₁₂H₂₁N₃OS) C, H, N.

1-Ethyl-3-[5-nitro-3-(m-nitrophenacyl)-4-thiazolin-2-ylidene]urea (106). To 25 ml of concd H_2SO_4 at 15-20° was added slowly 7.25 g (0.025 mole) of 1-ethyl-3-[3-phenacyl-4-thiazolin-2-ylidene]urea, and to the resulting solution 1.6 g (0.05 mole) of red furming HNO₃ was added. The mixture was stirred cold for 1 hr, allowed to warm to room temp, stirred an additional 2 hr, and poured into 200 ml of iced H_2O . The solid was collected and recrystd from MeCN and then twice from *i*-PrOH to give 1.2 g (13%) of the product, mp 217-218° dec. Anal. (C₁₄H₁₃N₅O₆S) C, H, N.

1-Ethyl-3-(2-thiazolyl)urea. A mixture of 100 g (1.0 mole) of 2-aminothiazole and 75 g (1.05 mole) of ethyl isocyanate in 500 ml of MeCN was heated under reflux for 5 hr. A solid formed, the mixture was filtered hot, and the solid was washed with additional solvent and dried to give 141 g (82%) of the product, mp 177–180° *Anal.* (C₆H₉N₃OS) C, H, N.

1-Ethyl-3-(3-phenacyl-4-thiazolin-2-ylidene)urea. A mixture of 8.6 g (0.05 mole) of 1-ethyl-3-(2-thiazolyl)urea and 10 g (0.05 mole) of phenacyl bromide in 250 ml of *i*-PrOH was heated under reflux for 3 hr. The solution was allowed to cool to room temp, and the solid that formed was collected, washed with Me₂CO, and recryst twice from MeCN to yield 3.7 g (20%) of the product as the hydrobromide salt, mp 218-219°. Anal. ($C_{14}H_{16}BrN_3O_2S$) C, H, N.

To a suspension of 42.5 g (0.115 mole) of the salt in 200 ml of hot EtOH was added 1 N NaOH until all the solid had dissolved, and the solution was slightly basic. The solution was cooled, 300 ml of H₂O was added, and the white solid was collected and dried to yield 32 g (96%) of the base, mp 133-135°. Anal. ($C_{14}H_{15}N_3O_2S$) C, H, N.

Procedure B. 1-Ethyl-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)urea (9). To a stirred mixture of 21.6 g (0.1 mole) of 1-ethyl-3-(5nitro-2-thiazolyl)urea in 150 ml of DMF was added 4.7 g of a 53% dispersion of NaH in mineral oil (0.1 mole). The resulting solution was warmed to 60° , 17.2 g (0.11 mole) of EtI was added slowly, and the mixture was then heated at $60-65^{\circ}$ for 2 hr. The mixture was allowed to cool and was poured into 600 ml of iced H₂O. The solid was collected, dried, and recrystd once from EtOAc and then three times from *i*-PrOH to give 5.1 g (21%) of the product, mp 175-177°, identical with the material prepared by procedure A above.

1-Ethyl-3-(5-nitro-2-thiazolyl)urea.⁹ To a suspension of 290 g (2.0 moles) of 2-amino-5-nitrothiazole in 2 l. of toluene was added 200 g (2.8 moles) of ethyl isocyanate. The mixture was heated under reflux for 24 hr and filtered hot to give a quantitative yield of the product, mp 232-233°.

1-Alkyl-3-(5-nitro-2-thiazolyl)ureas. The following intermediates were prepared similarly to 1-ethyl-3-(5-nitro-2-thiazolyl)urea described above: 1-allyl-3-(5-nitro-2-thiazolyl)urea, mp 176–180°, in 35% yield after recrystn from EtOH-H₂O [Anal. ($C_7H_8N_4O_3S$) C, H, N]; 1-(3-nitro-2-thiazolyl)-3-(2-phenylcyclopropyl)urea, mp 202– 205.5° dec, in 70% yield after recrystn from EtOH [Anal. ($C_{13}H_{12}N_4O_3S$) C, H, N]; 1-(n-dodecyl)-3-(5-nitro-2-thiazolyl)urea, mp 142–144°, in 38% yield after recrystn from EtOAc (This material was not obtained analytically pure and was used as is.); 1cyclohexyl-3-(5-nitro-2-thiazolyl)urea, mp 209–214° (resolidifies and decomposes by 222°), in 64% yield after recrystn from MeCN [Anal. ($C_{10}H_{14}N_4O_3S$) C, H, N]; 1-(n-hexyl)-3-(5-nitro-2-thiazolyl)urea, mp 165–168°, in 23% yield after recrystn from EtOAc [Anal. ($C_{10}H_{16}N_4O_3S$) H, N. C: calcd, 44.10; found, 44.70)]; 1-tert-butyl-3-(5-nitro-2-thiazolyl)urea, mp >290°, in 65% yield after recrystn from EtOH-H₂O [Anal. ($C_8H_{12}N_4O_3S$) C, H. N: calcd, 22.94; found, 23.44)].

Literature preparations were available for 1-methyl-3-(5-nitro-2-thiazolyl)urea, ⁹ 1-butyl-3-(5-nitro-2-thiazolyl)urea, 1-isopropyl-3Procedure B-1. 1-Ethyl-3-(5-nitro-3-pentyl-4-thiazolin-2ylidene)urea (25). To a suspension of 21.6 g (0.1 mole) of 1-ethyl-3-(5-nitro-2-thiazolyl)urea in 150 ml of DMF at 10–15° was added in portions 4.4 g of a 55% dispersion in oil of NaH. The mixture was allowed to warm to room temp and heated to 80–85°, and 21.8 g (0.11 mole) of *n*-amyl iodide was added in portions. The mixture was heated at 85–90° for 3.5 hr and cooled to room temp, and an equal volume of toluene was added. The mixture was washed twicc with H₂O, and the organic layer was dried over MgSO₄. The solvent was removed *in vacuo*, and the residue was recrystd from EtOAcisooctane to give 9.6 g of yellow solid, mp 109–119°. Recrystn from about 2 l. of *n*-heptane gave 6.6 g of the product, mp 114–117°.

Procedure C. 3-Benzyl-2-imino-5-nitro-4-thiazoline Hydrochloride. A mixture of 108.5 g (0.34 mole) of N-(3-benzyl-5-nitro-4thiazolin-2-ylidene)-2,2-dimethylpropionamide⁵ and 58.2 ml (0.68 mole) of concd HCl in 2 l. of MeOH was heated under reflux for 4 hr. The solvent was removed in vacuo, and the residue was treated with 1 l. of cold *i*-PrOH. The liquid was decanted and upon standing deposited 19.1 g of a yellow powder, mp 217-218°. The undissolved gummy residue was triturated with an additional 1 l. of *i*-PrOH. The gum solidified, and the solid was collected, ground thoroughly in a mortar, and dried to give an additional 49.9 g of the product, mp 216-218°, total yield 75%. This material was used as is in the next step.

1-Benzyl-3-(3-benzyl-5-nitro-4-thiazolin-2-ylidene)urea (94). To 10 g (0.0368 mole) of 3-benzyl-2-imino-5-nitrothiazoline hydrochloride in 200 ml of Me₂CO was added 3.73 g (0.0368 mole) of triethylamine and 4.9 g (0.0368 mole) of benzyl isocyanate. The mixture was heated under reflux for 4 hr, cooled, and filtered. The filtrate was evaporated to dryness *in vacuo*, and the yellow oil was triturated with about 50 ml of cold H₂O. The H₂O was decanted, and the residue which solidified upon standing overnight was recrystd from about 100 ml of *i*-PrOH to give 6.5 g of the product (48%), mp 124-127°.

1-(2-Chloroethyl)-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)urea (107). To a suspension of 1 g (0.0048 mole) of 3-ethyl-2-imino-5nitrothiazoline hydrochloride in 40 ml of Me₂CO containing 0.48 g (0.0048 mole) of Et₃N was added 0.503 g (0.0048 mole) of 2chloroethyl isocyanate. The mixture was heated under reflux for 4.5 hr and filtered hot. The filtrate was cooled and refiltered, and then evapd to dryness *in vacuo*. The residue was recrystd twice from *i*-PrOH to give 0.7 g (52%) of the product, mp 148–149°. *Anal.* (C₈H₁₁ClN₄O₃S) C, H, N.

3-Ethyl-2-imino-5-nitro-4-thiazoline Hydrochloride. To a soln of 12.2 g (0.0474 mole) of N-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)-2,2-dimethylpropionamide⁵ in 250 ml of MeOH was added 8.15 ml of concd HCl (0.0948 mole), and the mixture was heated under reflux for 5 hr. The solvent was removed *in vacuo*, and the residue was recrystd from 500 ml of EtOH to give 4.3 g (43%) of the product as white crystals, mp 235°. Anal. (C₃H₈ClN₃O₂S) C, H, N.

1,1'-Hexamethylenebis[3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)urea]·1.33CH₃CN (108). A mixture of 21.0 g (0.1 mole) of 3-ethyl-2-imino-5-nitro-4-thiazoline hydrochloride and 8.4 g (0.05 mole) of hexamethylene diisocyanate in 400 ml of Me₂CO containing 10.1 g (0.1 mole) of triethylamine was heated under reflux for 3 hr and allowed to cool to room temp. The solid was collected and triturated with H₂O. The undissolved material was recrystd from 1400 ml of MeCN to give 23.4 g (82%) of the product, mp 217-219°. Anal. (C₁₈H₂₆N₈O₆S₂·1.33CH₃CN) C, H, N. The nmr spectrum confirmed the presence of MeCN.

Procedure D. 1-(3-Benzyl-5-nitro-4-thiazolin-2-ylidene)-3-(2,3dibromopropyl)urea (80). To a stirred solution of 5.0 g (0.0157 mole) of 1-allyl-3-(3-benzyl-5-nitro-4-thiazolin-2-ylidene)urea in 200 ml of CHCl₃ at 0° was added dropwise a solution of 0.81 ml of Br₂ in 10 ml of CHCl₃. The mixture was stirred at room temp for 0.5 hr and concd to dryness. The residue was recrystd twice from EtAc and then from 95% EtOH to give 4.4 g (58%) of the product, mp 136-138°.

1-(3-Benzyl-5-nitro-4-thiazolin-2-ylidene)-3-(2,3-epoxypropyl)urea (78). A mixture of 25 g (0.079 mole) of 1-allyl-3-(3-benzyl-5nitro-4-thiazolin-2-ylidene)urea and 15.7 g (0.091 mole) of mchloroperbenzoic acid in 250 ml of CHCl₃ was allowed to remain at ca. 0° for 60 hr. The mixture was filtered, and the excess peracid was destroyed with 5% aqueous sodium sulfite. The organic layer was washed several times with 10% aqueous NaHCO₃, dried, and evaporated to half-volume. The solid was collected and recrystd from EtOH to give 3.5 g (14%) of the product, mp 161–164°.

1-(3-Benzyl-5-nitro-4-thiazolin-2-ylidene)-3-(2,3-dihydroxypro-

pyl)urea (79). A mixture of 4.2 g (0.0126 mole) of 1-(3-benzyl-5nitro-4-thiazolin-2-ylidene)-3-(2,3-epoxypropyl)urea and 42 ml of HCO₂H was heated under reflux for 1 hr and evapd to dryness *in vacuo*. The residue was heated under reflux with 42 ml of 2 N HCl, and the aqueous layer was decanted from a brown gum. The gum was triturated with MeOH, and the solid that formed was recrystd from MeOH to give 1 g (23%) of the product, mp 145-149°

1-[3-(2-Chloroethyl)-5-nitro-4-thiazolin-2-ylidene)-3-ethylurea (109). A mixture of 6.1 g (0.0235 mole) of 1-ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene]urea (10) and 65 ml of SOCl₂ was heated at 50-60° for 6 hr and cooled, and the SOCl₂ was removed *in vacuo*. The residue was recrystallized twice from *i*-PrOH, then from C₆H₆, and once again from *i*-PrOH to give 2.1 g (32%) of the product, mp 131-133°. Anal. (C₈H₁₁ClN₄O₃S) C, H, N.

1-Ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene]urea Acetate Ester (110). A mixture of 5.3 g (0.028 mole) of 1-ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene]urea in 50 ml of HOAc and 50 ml of acetic anhydride was heated on the steam bath for 2.5 hr and evapd to dryness *in vacuo*. The residue was triturated with Et₂O and then recrystd from *i*-PrOH to give 3.7 g of the product (44%), mp 135-137°. Anal. (C₁₀H₁₄N₄O₅S) C, H, N.

1-Ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene] urea Caproate Ester (111). To a solution of 4.4 g (0.0169 mole) of 1ethyl-3-[3-(2-hydroxyethyl)-5-nitro-4-thiazolin-2-ylidene] urea in DMF was added 2.8 g (0.0208 mole) of hexanoyl chloride. When the exothermic reaction had abated, the mixture was heated on the steam bath for 2.5 hr and poured into iced H₂O. The solid was recrystd from toluene to give 3.4 g (56%) of the product, mp 93.5– 98°. Anal. ($C_{14}H_{22}N_4O_5S$) C, H, N. 3-Ethyl-2-imino-4-methyl-4-thiazoline Hydriodide. A solution

3-Ethyl-2-imino-4-methyl-4-thiazoline Hydriodide. A solution of 100 g (0.876 mole) of 2-amino-4-methylthiazole and 140 g (0.897 mole) of EtI in 500 ml of *i*-PrOH was heated under reflux for 24 hr and allowed to cool to room temp. The solid was collected and recrystd from about 1 l. of MeCN to give 101.8 g (43%), mp 159-164°. An analytical sample was prepared by recrystallizing 10 g from MeCN again to give 7.9 g, mp 162-165°. Anal. (C₆H₁₁IN₂S) C, H, N.

1-Ethyl-3-(3-ethyl-4-methyl-4-thiazolin-2-ylidene)urea. To a solution of 27 g (0.1 mole) of 3-ethyl-2-imino-4-methyl-4-thiazoline hydriodide in 95 ml of C_5H_5N was added 8 g (0.11 mole) of EtNCO. The solution was heated on the steam bath for 2.5 hr and filtered. The filtrate was concd to dryness *in vacuo* and triturated with warm H₂O. Initially most of the material dissolved, but upon scratching a copious ppt formed. The solid was collected and recrystd from about 1100 ml of *n*-heptane to give 11.9 g (56%) of the product, mp 117.5-121°. Anal. (C₉H₁₅N₃OS) C, H, N.

1-Ethyl-3-(3-ethyl-4-methyl-5-nitro-4-thiazolin-2-ylidene)urea (112). 1-Ethyl-3-(3-ethyl-4-methyl-4-thiazolin-2-ylidene)urea, 8.8 g (0.0437 mole), was added in portions to 15 ml of concd H_2SO_4 at 0-10°. To the cold solution was added dropwise 2.75 g (0.0437 mole) of red fuming HNO₃. The cold mixture was stirred for 15 min, allowed to come to room temp, and stirred for 4 hr. It was then poured into 300 ml of iced H_2O . The solid was collected and recrystd from *i*-PrOH to give 3.3 g (29%) of the product, mp 188-190°. Anal. (C₉H₁₄N₄O₃S) C, H, N.

1,1'-[Tetramethylenebis(5-nitro-4-thiazolin-3-yl-2-ylidene)]bis(3-ethylurea) (113). To a solution of 21.6 g (0.1 mole) of 1ethyl-3-(5-nitro-2-thiazolyl)urea in 150 ml of DMF maintained at about 20° was added in portions 4.4 g of a 55% dispersion of NaH in oil. The mixture was warmed to 70°, and 19 g (0.11 mole) of 1bromo-4-chlorobutane was added. The mixture was heated at 70-80° for 2 hr, cooled, and poured into iced H₂O. The sticky solid was collected and triturated with hot *i*-PrOH to give 4.7 g of a yellow solid. Recrystallization from a mixture of DMF and EtOH gave 2.3 g (9.5%) of the product, mp >300°. *Anal.* (C₁₆H₂₂N₈O₆S₂) C, H, N. 1,1'-[2-Butenylenebis(5-nitro-2-thiazolin-3-yl-2-ylidene)] bis-

1,1'-[2-Butenylenebis(5-nitro-2-thiazolin-3-yl-2-ylidene)]bis-(3-ethylurea) (114). The sodium salt of 10.8 g (0.05 mole) of 1ethyl-3-(5-nitro-2-thiazolyl)urea was prepd in the usual manner from NaH in 60 ml of DMF. To this was added 3.5 ml of $ClCH_2CH=CHCH_2Cl$, and the mixture was stirred at 80° for 2.75 hr and poured into H_2O . The crude product was collected and recrystd from HOAc to give 1.7 g (7%) of the product, mp 275° dec. Anal. $(C_{16}H_{20}N_8O_6S_2)$ C, H, N.

N,N'Bis(3-ethyl-5-nitro-4-thiazolin-2-ylidene)-1,4-piperazinedicarboxamide Monohydrate (115). To 15 ml of concd H₂SO₄ at 0-10° was added in portions 5.8 g (0.0147 mole) of N,N'-bis(3-ethyl-4-thiazolin-2-ylidene)-1,4-piperazinedicarboxamide. To the cold solution was added 1.85 g (0.0294 mole) of red fuming HNO₃ dropwise. The mixture was stirred cold for 15 min and then poured into 200 ml of iced water. The solid was collected, triturated with hot EtOH, and slurried with ether to give 5.0 g (68%) of the product mp 316° dec. Angl. (C. H. N.O.S. 'H₂O) C. H. N.H.O.

product, mp 316° dec. Anal. ($C_{16}H_{20}N_8O_6S_2^{+}H_2O$) C, H, N, H₂O. N,N'-Bis(3-ethyl-4-thiazolin-2-ylidine)-1,4-piperazinedicarboxamide. A mixture of 10 g (0.04 mole) of phenyl 3-ethyl-4-thiazoline- $\Delta^{2,N}$ -carbamate and 1.8 g (0.02 mole) of piperazine was heated at 140-150° for 1 hr, cooled, and diluted with 50 ml of Me₂CO, and the solid was collected (6.5 g). Recrystallization from a mixture of DMF and MeCN provided 5.8 g (73%) of the product, mp 270-277°. Anal. ($C_{16}H_{22}N_6O_2S_2$) C, H, N.

1-Ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)-1-nitrosourea. To 11.8 g (0.05 mole) of 1-ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)urea hydrochloride in H₂O containing 4.28 ml (0.05 mole) of concd HCl was added dropwise at $15-20^{\circ}$ an aqueous solution of 3.45 g (0.05 mole) of NaNO₂. The mixture was stirred at 20° for 2 hr and filtered. The solid was recrystd from *i*-PrOH to give 5.8 g (51%) of the product, mp 106-109°. Anal. (C₈H₁₂N₄O₂S) C, H, N.

1-Ethyl-3-(3-ethyl-5-nitro-4-thiazolin-2-ylidene)-2-thiourea (116). To 15 ml of concd H_2SO_4 , cooled in an ice bath, was added in portions 8.0 g (0.0372 mole) of 1-ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)-2-thiourea. To the cold soln was added dropwise 2.3 g (0.0372 mole) of red fuming HNO₃. The mixture was stirred for 20 min and poured into 200 ml of iced H_2O . The yellow solid that resulted was collected and recrystd from 1100 ml of *i*-PrOH to give 2.5 g (27%) of the product, mp 237-239°. Anal. (C₈H₁₂N₄O₂S₂) C, H, N.

1-Ethyl-3-(3-ethyl-4-thiazolin-2-ylidene)-2-thiourea. To 25.6 g (0.1 mole) of 3-ethyl-2-imino-4-thiazoline hydriodide and 10.1 g (0.1 mole) of triethylamine in 200 ml of Me₂CO was added 8.7 g (0.1 mole) of ethyl isothiocyanate. The mixture was heated under reflux for 2 hr, and the solvent was removed *in vacuo*. The residue was triturated with 200 ml of H₂O, and the solid was collected and recrystd from MeCN to give 10.6 g (49%) of the product, mp 95–98°. *Anal.* (C₈H₁₃N₃S₂) C, H, N.

Acknowledgments. The authors express their appreciation to Dr. Paul E. Thompson and Mr. Ronald E. Voigtman and coworkers of these laboratories for the antiparasitic evaluation of these compounds. We also thank Dr. J. M. Vandenbelt and coworkers for the spectral studies, and Mr. Charles E. Childs and associates for the microanalyses. The encouragement of Dr. E. F. Elslager during the course of these investigations is gratefully acknowledged.

References

- (1) L. M. Werbel and J. R. Battaglia, J. Med. Chem., 14, 10 (1971).
- (2) Parke, Davis and Co., British Patent 1,158,751 (July 16, 1969).
- (3) P. J. Islip, M. D. Closier, M. C. Neville, L. M. Werbel, and D. B. Capps, J. Med. Chem., 15, 951 (1972).
- (4) Parke, Davis and Co., German Patent 1,927,448 (April 12, 1969).
- (5) Parke, Davis and Co., German Patent 1,911,256 (Sept 25, 1969).
- (6) P. E. Thompson, J. E. Meisenhelder, and H. Najarian, Amer. J. Trop. Med. Hyg., 11, 31 (1962).
- (7) J. Druey, Helv. Chim. Acta, 24, 229E (1941)
- (8) B. Kickhofen and F. Krohnke, Ber., 88, 1109 (1955).
- (9) Merck, U. S. Patent 2,755,285 (July 17, 1956).
- (10) A. Cuckler, et al., Proc. Soc. Exp. Biol. Med., 92, 484 (1956).
- (11) Merck, U. S. Patent 3,107,251 (Oct 15, 1963).